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Although acylation represents one of the most useful and
thoroughly studied reactions in organic chemistaysuccessful
free radical-mediated acylation is not presently available. Only
a few examples, involving highly activated carbonyls such as
biacety? and acyl aldoximedhave appeared to datelt is also
noteworthy that free radical carbonylation has recently been
reported® This reaction allows the introdution of carbonyl
groups to organic halides.

In order to examine the feasibility of radical-mediated
acylation reactions, we began our study with thiol esters as
radical acceptors (eq 2. When 4-phenoxybutyl iodidé was
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irradiated in the presence &phenyl thioformate2a and bis-
(tributyltin) (1.2 equiv) in benzene (0.2M in iodide) using
Neumann’s metho8laldehyde3a was obtained in 15% yield.
The use ofS-phenyl thioacetat@b did not give 3b, but the
selenol esteRc gave3b in 18% yield. We conceived that the
unsuccessful outcome might be due to the reversibility of the
additions of alkyl radicals to €0 bonds and the higherbond
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strengths of &0 bonds!® Thus, a fundamentally new acylation
approach was sought, and we now report a conceptually simple
solution to this problem, wherein an oxime etderan be used

as a carbonyl equivalent radical acceptor in addition reactions
of alkyl radicals. This concept is based on the fact that alkyl
radicals undergo facile additions t&=Bl bonds such as oxime
etherd?12 and hydrazone¥® As shown in Scheme 1, our
approach involves additions of alkyl radicals t&=N bonds
and subsequetexclusion of phenyl thio radicals which react
with bis(trialkyl)tin to propagate a chain. However, initial
attempts to employ this strategy were disappointing, since the
use of4a under the similar conditions affordes in 20%
yield,* whereas the use df afforded only a small amount of
5b (<5%).

We next examined phenylsulfonyl oxime ethers since the
phenylsulfonyl group would be expected to lower the energy
of the LUMO of a radical acceptor, thereby increasing the rate
of addition of alkyl radicals to4c and 4d by reducing the
SOMO-LUMO difference!® As predicted, the phenylsulfonyl
oxime ethersdc and 4d appeared to be highly effective and
synthetically useful reagents for radical-mediated acylations
under mild conditions. Reagends and4d were prepared by
MCPBA oxidation of4a and4b, respectively, and obtained as
stable crystalline solid¥. When1 was treated with BssnSnBy
(1.2 equiv),4c (2.0 equiv), and acetone (5 equiv) as a sensitizer
in benzene (0.3 M in iodide) at 300 nm for 4 h, O-benzyl
aldoxime 5a was obtained in 94% yield. This product was
hydrolyzed to aldehyd&a in 90% yield using a 30% HCHO
solution in THF (1:3) in the presence of a catalytic amount of
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Table 1. Preparation of Oxime Ethers from Alkyl Halides wilt
and4d*
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a All yield are uncorrected for recovery of starting materbal4 was
used.© 16 (20%) was recovered.The direct reduction product (20%)
was also isolated.4,4-tert-butyldibenzyl (40%) was isolated.

HCL.17 In addition a small amount of O-benzylpentanal-
doxime (12-20%) was isolated as a result of the homolytic
bond cleavage of the Sm-C4Hg bond under the photochemical
conditions used. The use of hexamethylditin obviates the
problem of the formation of aldoxime byproduct, and the
remaining reactions were carried out with this reagent (1.2
equiv)1® Thermal initiation with AIBN was also investigated
with 1 and4c. However, the reaction was incomplete even after
12 h, and the yield was considerably lower (40%).
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yields were lower. In the reaction with benzylic bromide, the
desired oxime ether was obtained in low yield (40%) along with
the dimeric product (40%) because of the relatively low
reactivity of the stable benzylic radical. Acetal, ester, alcohol,
and carbamate moieties are all tolerated, as would be expected
from the nature of the radical reaction. The reaction was
successfully applied to a carbohydrate in which acylations were
achieved at the anomeric center, thus providing facile routes to
highly functionalizedC-glycosyl derivatives.

Encouraged by the success of this acylation approach, we
have studied the feasibility of the cyclizatieacylation se-
quence, which cannot be achieved using conventional synthetic
methods (eq 2). When a mixture @7, MesSnSnMeg (1.2

OEt
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@ MeasnSnMe3
“=N-0Bn
27 R

28a: R =H (88%) cis:trans=1:6
28b : R = Me (78%) cis:trans=1:6

equiv), 4c (2.0 equiv), and acetone (5 equiv) in benzene (0.3
M in the iodide) was irradiated at 300 nm for 4 28a was
isolated in 88% vyield?

We have also studied three-component coupling reactions
involving an intermolecular addition, cyclization, and acylation
sequence (eq 3¥. Treatment of29 with MesSnSnMeg (1.2
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E=COOEt 30a: R =H (82%) cis:trans=5:1
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equiv),4c (2.0 equiv), and acetone (5.0 equiv) in benzene (0.3
M in 29) and irradiation at 300 nm for 6 h, followed by
hydrolysis of the O-benzyl oxime ether group, affor@hin
82% yield, demonstrating the synthetic usefulness of the present
method. A similar result was also obtained wdtti, although
a lower yield was obtained.

In conclusion, we have discovered the first successful radical
acylation approach which we believe has great synthetic

Tabl_e_l summarizes the experimental results and illustratespotential because it succeeds in complex molecules, where more
the efficiency and scope of the present method. For most of conventional synthetic methods would be inappropriate. Further

the cases observed, the reaction was completerwdtti with
alkyl iodides and afforded the O-benzyl oxime ethers in high
yield. However, sterically hinderetert-butyl iodide did not
work well with 4d. The reaction was successful with alkyl

studies on the synthetic utility of this method with several other
functionalized phenylsulfonyl oxime ethers are in progress, and
the results will be reported in the future.
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